
Reason & Act : A Modular Approach to Explanation Driven Agents for
Vision and Language Navigation

Shaunak Halbe1, Ingrid Navarro2 and Jean Oh2

Abstract— Vision-and-Language Navigation (VLN) is a
multimodal task where an agent follows natural language
instructions to navigate in photo-realistic environments. VLN
assumes discrete motion along viewpoints of an undirected
navigation graph. However, navigation in the real world
demands continuous movement through low-level actions, thus
motivating the task of Vision-and-Language Navigation in
Continuous Environments (VLN-CE). Current approaches to
VLN-CE use end-to-end models that attempt to solve both
global reasoning and low-level control tasks. Training a single
model to perform tasks with vastly differing requirements
is difficult. We present the design of a modular system in
the form of a global and local planner. The global planner
would be responsible for the overall navigation to the desired
goal position as indicated by the natural language instruction.
It predicts a high-level waypoint to be reached by a local
planner through execution of a series of low-level actions.
The current baselines for VLN-CE are weak and cannot
be scaled for global planning. In this paper, we focus on
improving multi-modal understanding of VLN-CE agents with
an intention of extending them to form the global planner. To
boost multi-modal understanding, we introduce a grounding
module along with a Reason-and-Act strategy requiring the
agent to identify salient objects in its surroundings. Such
a scheme allows the agent to derive visual cues and match
them with the verbal indicators given in the instruction. We
believe, an agent that can learn to link the signals present in
different modalities can perform better in unseen environments.

Index Terms— Vision-and-Language Navigation, Embodied
Agents, Hierarchical Planning

I. INTRODUCTION

A robot that can understand and execute human instruc-
tions has been a dream for scientists since ages. Up until a
few years ago, such a robot was only imagined in science
fiction movies. Vision-and-Language Navigation (VLN) [1]
takes a significant step towards achieving this dream by for-
mally defining this task. VLN requires an agent to navigate
across photo-realistic visual scenes by inferring directional
cues from a natural language instruction. Although this is an
inherently challenging task for robots to carry out, certain
assumptions have simplified the requirements for developing
such an agent. VLN agents move by snapping across discrete
viewpoints of an undirected navigation graph and are not
concerned with the low-level path planning required to
reach any viewpoint. These agents observe the environment
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through panoramic images, and use it to choose the next
viewpoint from a list of available candidates.

Some of these assumptions are strong as compared to
real world conditions. The more recently proposed task
of Vision-and-Language Navigation in Continuous Envi-
ronments (VLN-CE) [2] takes a step closer to the real
world setting, by requiring the agents to execute low-level
actions in continuous environments. This setting presents
further challenges as the agents are no longer guaranteed
perfect localization, actuation, and navigation. The authors
of VLN-CE [2] introduce two end-to-end models to serve as
baselines. Due to the complex nature of this task, the models
achieve low success rates.

We believe that solving such a complex, multi-stage task
requires a hierarchical approach with modular components
that divide task responsibilities (e.g., alignment, reasoning,
control, etc) among themselves. Toward this end, we ex-
plore methods for improving the high-level planning aspect.
Specifically, we focus on improving the alignment between
visual and verbal signals with a goal of leveraging it to
improve high-level navigation.

We discuss the structure of a global planner which is
entrusted with the task of correlating the visual observations
with the instruction and providing us with a high level
waypoint to navigate towards. Such a waypoint would then
be reached by a local planner through the execution of a
series of low-level actions. We explore the idea of an agent
that can identify salient features in visual scenes and link
them to verbal indicators to develop a richer understanding
of the environment. In this spirit, we introduce a reasoning
component, which requires the model to identify salient
objects in its surroundings that are pivotal in navigating
towards the goal. To summarize, our contributions to improve
the high-level planning are two fold; we

• introduce a Vision-Language grounding module that
generates strongly grounded features in Vision, Depth
and Language Space.

• propose a reasoning component that allows an agent to
enhance its multi-modal understanding.

II. RELATED WORK

A. Vision-Language Navigation

In VLN [1], an agent is required to follow a navigation
instruction from a start location to a goal. Usually, the goal
position is not explicitly provided and is to be inferred from
the instruction. Overall, VLN models ([3]–[6]) have seen
considerable progress in their ability to reach the goal and



Fig. 1. Global Planner with Cross Modal Attention

the degree of their instruction-trajectory alignment. While
most existing works only consider the scenario where the
test environments are previously unexplored, some ([3], [5],
[7]) also consider a setting where the agent can explore
the test scenes prior to evaluation. Among these works, the
Speaker-Follower [3] approach is quite common where a
speaker model generates novel instructions from sampled
trajectories which are then used for path selection while
training the follower. Different from these, transformer based
Vision-and-Language pre-training approaches have been suc-
cessfully extended to VLN. [6], [8] have achieved positive
results by demonstrably increasing the vision and language
alignment by transferring multimodal transformers pretrained
on internet data to VLN settings.

B. Other Language-Guided Navigation Tasks

Apart from VLN, several other tasks involving Language-
Guided Navigation / Interaction ([2], [9]–[13]) have been
proposed which place an agent in an embodied setting
requiring visio-linguistic understanding. These tasks are in
a similar vein to the VLN tasks but differ in the activity
expected from the agent. Most similar to VLN is VLN-
CE [2], which requires an agent to move in a continuous
environment in the absence of a navigation graph. VLN-
CE also differs with regard to the topological and positional
knowledge that the agent has access to. However, VLN-
CE has the same high-level objective of language guided
navigation as VLN. On the other hand, Embodied Question
Answering (EQA) [9] requires an agent to navigate based
on the natural language question and answer it using the
explored information. Similarly, in Embodied Object Re-
ferral (EOR) the agent is tasked with navigating towards
an object in the environment based on a natural language
instruction. Unlike EOR and EQA, tasks like Vision and
Dialog History Navigation (VDHN) and Embodied Goal-
Directed Manipulation (EGM) require interaction with the

oracle or manipulation in the environment. We refer readers
to [14] for further details about the aforementioned tasks. In
this paper we focus on designing a modular agent for the
VLN-CE task.

C. Modular Planning

Previous works([12], [15], [16]) have proposed hierar-
chical approaches to solve Embodied Vision-and-Language
Planning tasks. [17] propose MoViLan, a modular approach
for long horizon tasks such as Vision-and-Language Navi-
gation. MoViLan uses a novel Graph Convolutional Neural
Network (G-CNN) based approach for mapping by approxi-
mating the geometry of nearby objects. The navigation map
thus generated is used along with semantic information to
predict high-level actions. Finally these high level actions
are decomposed into low-level actions using a non-learning
search strategy like A*. [15] and [16] use supervised learning
to learn to predict high-level waypoints using images and
instructions. In the second stage, Reinforcement Learning is
used to learn actions to reach these waypoints.

Similar to these approaches, we discuss a modular design
to optimize for subgoals using a global planner. However, in
VLN-CE environment subgoals are not explicitly provided
making it a challenging task to work on.

III. PROBLEM FORMULATION

Following the definition in [14], let S = {V,L}
represent the set of states encompassing the visual ob-
servations, V , and language inputs, L. Next, let A =
{stop,turn left,turn right,move forward} in-
clude the set of possible actions. The VLN task can be
formulated as ΦVLN = {S,A, s0, sgoal}, where s0, sgoal ∈ S
represent the initial and target states, respectively. Thus, a
plan ΨVLN = 〈s0, a0, s1, a1, . . . , sT, aT〉 exists such that each
state st, where t ∈ [0, T ], is associated with a location in
the environment leading to the final goal. An episode in



Fig. 2. Cross Modal Attention

VLN requires an agent to find a route from the start state
to a target state following an instruction l ∈ L. At each
time-step t, the agent in the environment E is said to be
in a state st, represented as (vt, l) where vt corresponds to
the current visual observation, and l is the instruction. The
agent must predict a solution Ψ̂VLN = 〈s0,a0,s1,a1,...,sT,aT〉
by executing an action at ∈ A at each state st following a
policy π parametrized by θ such that at = π(st; θ).

The episode is deemed successful if the sequence of
actions, both, delivers the agent close to the intended goal
location sgoal, and minimizes the difference between the
ground-truth plan ΨVLN, and the predicted plan Ψ̂VLN.

IV. APPROACH

In this section, we introduce our global planner πglobal
which is tasked with predicting the next waypoint given vi-
sual observations and a specified instruction. We assume the
predicted waypoints are passed to a local planner πlocal which
predicts the sequence of low-level actions to reach each of the
intended waypoints. As mentioned in the previous sections,
our paper focuses on exploring techniques to improve the
high-level planning. Thus, we leave local planning out of
the scope of our work. We refer readers to Figure 1 for the
model architecture.

A. Global Planner

Following [2], we leverage imitation learning [18] to train
the global policy πglobal to predict the next waypoint gt by
imitating expert actions. We train our global agent using AI
Habitat [19] and the VLN-CE dataset [2]. In our setting,
πglobal receives an instruction and at each time-step has access
to visual observations comprised by color and depth images.
The global policy then uses this information to predict the
next waypoint gt = πglobal(st; θglobal) in terms of distance
and heading relative to its current position.

Our global planner is comprised by two sub-modules,
a grounding module tasked with ensuring the alignment
between the language and visual modalities, and a reasoning
component which ensures the agent is able to explain the
actions taken in the past. Below we provide further details
about the aforementioned modules.

1) Grounding Module: In VLN-CE [2], the authors pro-
pose a vanilla Sequence-to-Sequence (Seq2Seq) model and a
Cross-Modal Attention (CMA) based Recurrent Neural Net-
work (RNN) to serve as baselines for the tasks. Pre-trained

Fig. 3. Extracting the ground truth from Scene Priors

transformer models ([20]–[22]) have starkly outperformed
RNN based approaches across a range of language only
(Question-Answering, Language Modelling) and multimodal
(VQA [23], VisDial [24]) tasks. Drawing inspiration from
such tasks, we introduce a Vision-and-Language Grounding
module in the form of a pre-trained LXMERT encoder [25].
This module completely replaces the individual instruction
encoder and RGB image encoder from the baselines. By
design, said model requires bounding box feature vectors
of top 36 objects extracted by a 101-layer Faster-RCNN.
Thus, we use a pre-trained Faster-RCNN [26] model to
extract objects features from our RGB observations to feed
to the transformer-based model. We freeze the parameters
of both of the encoders, and merely use them as feature
extractors. The LXMERT model encodes the image features
and instruction tokens and performs cross-modal as well as
self-attention over 9 language, 5 visual and 5 cross-modal
transformer-encoder layers. For each image-instruction pair,
we extract the last layer’s outputs from language and vision
streams of LXMERT and combine it to form a representation
grounded in vision and language. Separately, we use a
Resnet [27] encoder trained on the dataset from the Gibson
Environment [28] to extract features from depth observations.

Finally, we use CMA as in [2] to fuse the grounded
features extracted from LXMERT with the depth features.
CMA consists of two RNN encoders as shown in Figure
2, one to track visual observations and the other one to
make decisions based on attended features. The previous
action features along with the hidden state are used to attend
over the language embedding from LXMERT. This attended
language embedding is in-turn used to attend to the visual
and depth features. Thus through cross-modal interaction, a
strongly grounded representation is produced.

2) Reasoning Component: Through this component, we
task the agent with identifying an object in its field of sight
that is most relevant to instruction and the region that the
agent is in. We implement the reasoning module as a linear
layer on top of the attention module. We pass the grounded
features through the linear layer with an aim to classify it
between the 41 object categories present in Matterport3D
[29]. We use Cross Entropy as the loss function and optimize
it auxiliary to the action prediction loss. Curating good-
quality ground truths for each scene is very crucial. At each
step, we choose the ground truth object in one of following



Val-Seen Val-Unseen

PL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ ST ↓ PL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ ST ↓

Seq2Seq w/o
reasoning 7.60 8.48 45.60 30.20 23.52 22.41 102 7.77 9.14 40.73 25.28 16.53 15.03 97

Seq2Seq w/
reasoning (Ours) 8.30 8.66 44.95 34.83 23.65 21.99 99 7.50 8.88 42.40 23.54 16.47 15.28 87

TABLE I
REASONING EXPERIMENT

Val-Unseen

PL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ ST ↓

CMA 8.59 9.20 41.49 28.16 17.45 15.82 114

LXMERT
+ CMA (Ours) 8.31 9.02 42.21 27.19 17.18 15.92 100

TABLE II
ALIGNMENT EXPERIMENT

three ways:
• An object directly mentioned in the instruction is

present in the agent’s field of sight
• An object present in the visual scene is correlated to an

object mentioned in the instruction
• An object present in the visual scene is often observed

in the region (room) where the agent is currently located
We use a Knowledge Graph from Visual Genome[30] to
find associations between objects and determine their co-
occurrence. We filter this Knowledge Graph by keeping
only the objects and regions present in Matterport. Given
an object, we use the Knowledge Graph to find other
commonly associated objects. While choosing the ground
truth an object directly mentioned in the instruction is given
highest preference. In case of multiple objects, we use co-
occurrence values to determine the ground truth. At each step
we maintain a list of objects consisting of the ones directly
mentioned in the instructions, associated with the objects
mentioned in the instruction and ones that are associated
with the region (room) where the agent is present. We extract
co-occurrence values between two objects and between an
object and a region from the Knowledge Graph. We select
the object with the maximum co-occurrence value as the
ground truth for the reasoning task.

V. EXPERIMENTS
A. Metrics

We report standard metrics for visual navigation tasks
defined in [1], [31], [32] of success rate (SR), success
weighted by inverse path length (SPL), normalized dynamic-
time warping (nDTW), path length in meters (PL), oracle
success rate (OS), navigation error in meters from goal
at termination (NE), and steps taken (ST) to quantify the
performance of the model.

B. Implementation Details

We train our agents on the ‘train’ split from VLN-CE
dataset in the AI Habitat simulator[19]. We utilize the Adam
optimizer [33] with a learning rate of 2.5 ×10-4. We use
a DAgger-like [18] approach to collect trajectories with
oracle actions as ground truth actions. We collect 10,819
trajectories for both of the experiments. Imitation learning is
then performed for 15 epochs over all collected trajectories.
In order to match the original setup [2], we set the forward
actuation of the agent to 0.25 meters and a turning angle
of 15o. We report the results on the entire ‘val-seen’ and
‘val-unseen’ splits from [2].

As mentioned in Section IV-A.1, the grounding module is
frozen during the training and inference. We use a Faster-
RCNN model pre-trained on Visual Genome [30], to extract
20 object proposals from the RGB image observations. We
use the LXMERT model adapted from huggingface [34] pre-
trained on multiple multi-modal datasets (MS-COCO [35],
VQA [23], GQA [36], and Visual Genome). The depth
observations are separately extracted from a Resnet encoder
which is updated during training. The textual instructions are
tokenized to word-piece embeddings through the LXMERT
tokenizer from huggingface, and then pooled out. Finally, we
implement our models in PyTorch on top of AI Habitat.

VI. RESULTS

Tables I & II present a comparison of our approach
against the baseline models for the Reasoning and the Vision-
Language grounding experiments respectively.

A. LXMERT CMA v/s Baseline CMA

We observe that the LXMERT model marginally outper-
forms the baseline under the metrics of PL, NE, nDTW, SPL
and ST. However, its performance drops slightly under the



metrics of OS and SR. Such a moderate performance by
LXMERT is counter-intuitive considering the large gains it
furnishes on other Vision and Language tasks. The basic
LXMERT model contains around 300 million parameters
which is far more than the CMA or Seq2Seq baselines.
Training LXMERT in an embodied in-simulation setting
takes very long adding to the difficulty of achieving or
even assessing convergence. This, limited our studies to
using a pretrained LXMERT model without fine-tuning it’s
parameters during the VLN-CE training process. We ascribe
the middling performance of LXMERT to the domain shift
between the high-quality images it was pre-trained on and the
significantly lower-quality visuals it experienced through the
simulator. A promising future direction would be to replace
the Faster RCNN from the LXMERT pipeline with a simpler,
more efficient feature extractor and training the overall model
on scenes from VLN-CE.

B. Seq2Seq w/ reasoning v/s Seq2Seq w/o reasoning

The agent equipped with the reasoning component
achieves comparable results for the val-seen split, which
contains scenes observed by the agent during training. The
gains with the reasoning component are better realized for
the val-unseen split, where it improves over the baseline
for majority of the metrics. Although the improvements
are minor, they help support our claim of the reasoning
component allowing the model to generalize to unseen
environments. The reasoning component described in this
paper is a preliminary implementation of our idea. We
plan to pursue more sophisticated mechanisms for inducing
reasoning in the agent.

VII. CONCLUSIONS

In this work, we proposed the idea of a modular agent for
VLN-CE. However, we focused on the high-level planning
component of this agent. More specifically, we worked
towards improving the baselines and presented a strategy to
incorporate them into a modular architecture. Although the
results are mixed and the gains are smaller, these directions
appear to be promising and create ample opportunities for
development in the future. Following this work, we would
like to improve the Vision & Language Grounding module,
by making it computationally efficient, thus allowing it to be
trained or finetuned on VLN-CE episodes.

Further we would like to explore better alternatives for in-
culcating the ability of reasoning in such agents by allowing
them to explore and understand the environments. Finally, we
plan to build and test the entire modular agent by integrating
the proposed high-level policy with a local planner.
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